
Smallworld Core Spatial Technology™ 4
Smallworld MAGIK™: The object oriented language for an

object oriented world

GER-4235 (09/04)© 2004 General Electric Company.

All Rights Reserved

Life is a box of objects

Early GIS applications were based on procedural

languages that implemented functionality as

procedures and held data in separate structures.

This demarcation of function and data might have

been suitable for mass market applications such as

word processing or spreadsheets but the Smallworld

architects believed, fundamentally, this was the wrong

approach for GIS applications.

Although the first GIS applications were expected to be

relatively simple, they were also expected to become

much more complex over time. In this context it would

be important to be able to easily model an enterprise's

complex assets and their convoluted interrelationships.

As applications became more complex, it became

more important to shield the application developer from

the internal implementation details using a well defined

application programming interface (API). This

approach would allow the underlying GIS to develop

new technologies and functionality that might change

the internal implementation, but, importantly, at the

same time preserve the public API, reducing the effort

and cost required to migrate code.

As applications became more powerful they required

greater investment in their development and

integration. To maximise the return on this investment,

it was expected that code re-use would become a

significant factor when attempting to reduce

development costs, maintenance overhead and to

achieve high quality applications.

Finally, it was expected that the GIS would eventually

move out of mapping and engineering departments and

adopt a more important role within the enterprise. In this

context, such systems might be in operation for several

years during which time new hardware platforms or

operating systems might emerge and quickly become

dominant in the marketplace. This meant that, ideally,

development tools should be as platform independent

as possible. This would safeguard any investment made

already in existing applications.

An object oriented approach to an object
oriented world

Using procedural languages to model complex

systems is problematic to say the least. Increasing

complexity tends to result in longer and longer lists of

APIs with ever move cryptic names. New functionality

demands often result in changes to an API that are

often too subtle for most application developers to

detect. In other cases system architects might

generate a new API that although similar to an

existing API is both named slightly differently and

works slightly differently, making the application

developers’ choice all the more difficult.

Object orientated languages model real world objects

as objects using classes. For example an electric

1

Smallworld MAGIK: The object oriented language for an object oriented world

GE Energy | GER-4235 (09/04)

Abstract

In the late 1980s, application development was dominated by flat, procedural languages such as C, Pascal,

Basic and so on. It was at the time that GE Energy Smallworld Software architects had the foresight to base a

new GIS application on the foundation of a new object oriented technology that was beginning to emerge. Object

oriented development offered the possibility of greater code reuse, encapsulation of data and functionality

together with a natural and elegant way to model the complex real world assets that future enterprise GIS

customers were expected to have. This new language was implemented using a novel virtual machine

architecture that allowed code to be written once and executed, with little change, on a variety of platforms.

So before C# and even before Java™, the Smallworld MAGIK™ programming language set the standard for

enterprise GIS development. Today it continues to be the only true, pure object oriented language designed

specifically to meet the unique set of challenges of enterprise GIS.

switch would be represented by a switch class. Each

class might have one or more fields that can be used

to hold attributes describing an instance of a class.

For example, a particular switch might have a type, a

manufacturer and a date when it was installed and so

on. In addition to data, each class can implement the

functionality that mimics the behavior of the real

world object it is modeling. This functionality is

exposed as a set of methods that forms the public

API of the class. For example, a method might allow

the switch to be turned off or on, or the name of its

manufacturer to be accessed.

This approach is appealing to application developers.

Complex systems implemented using procedural

languages often result in a very large global API that

quickly becomes difficult to use and unwieldy to manage.

By splitting up this complex API and distributing it over

several appropriate classes, it becomes much easier to

manage and use. For example, application developers

looking for switch functionality need only look at the

switch class API and not be distracted by the APIs of

other parts of the system.

Object oriented languages also allow application

developers to easily model the real world relationships

and dependencies. For example, a public electric utility

might have several types of switches that share some

common functionality. Using a procedural language,

these would probably end up being modeled

independently with little common code reused. A key

feature of object oriented languages is inheritance.

This powerful concept allows a child class to take on

the characteristics of a parent class and supplement

this definition with additional specific qualities. In the

previous case, for example, the ability to turn a switch

on or off might be a common piece of functionality that

would be implemented on the parent switch class. This

allows it to be reused by other switch classes that

inherit from it. More specialized functionality that is

peculiar to a particular type of switch would only be

implemented on that specific class.

This ability to distribute a potentially complex API over

several classes and reuse code through inheritance is

a powerful advantage of object oriented language

when compared to their procedural ancestors. Object

oriented techniques offer dramatic improvements in

development productivity, reductions in maintenance

costs and higher quality applications.

A safe haven from technology

The Smallworld platform, from GE Energy, does not

claim to have been first to introduce the idea of the

virtual machine but the Smallworld platform was in fact

the first to realize the practical advantages of the

technology in enterprise GIS.

Most procedural based languages like C compile

directly to what is called machine code. These are the

simple instructions that are understood by a computer’s

processor and in turn execute functions implemented

by the computer’s operating system. Most consumer

computers’ operating system are based on the

Windows© operating system and their processors are a

derivative of Intel’s family of x86 based processors. For

consumer applications this is a perfectly acceptable

approach, but for the enterprise it often represents a

dependency on a single technology, which leaves some

businesses decidedly uncomfortable.

The Smallworld MAGIK application code is not

compiled directly into machine code, but instead is

converted into an intermediate virtual machine code

represented by what is called byte code. This code is

independent of the underlying hardware platform or

operating system. For each supported platform a

small virtual machine is provided that interprets these

byte codes and executes the appropriate machine

code or operating system function when required.

Since the Smallworld MAGIK application’s virtual

machine is small, comparatively simple in operation

and generic in construction, it is relatively

straightforward process to provide new Magik virtual

machines for new hardware platforms or operating

2

Smallworld MAGIK: The object oriented language for an object oriented world

GE Energy | GER-4235 (09/04)

3

Smallworld MAGIK: The object oriented language for an object oriented world

GE Energy | GER-4235 (09/04)

systems. Since the vast majority of the GIS application

code is written in the Smallworld MAGIK programming

language, most of the investment in an application can

be safeguarded during migration to a new hardware

platform or operating system when it emerges or at a

point in time that is convenient to the enterprise.

This approach has allowed the Smallworld architecture

to remain ahead of technology developments by

providing support for early workstations from vendors

such as SUN©, DEC©, HP© and IBM© (when GIS was

very much still within the remit of the engineering

department). It continues now with support for mass

market PCs based on Intel processors and the Windows

operating system and even to the recent emergence of

open source platforms such as LINUX™.

Compile and go

Most procedural languages such as C and, to a lesser

extent, even recent object oriented languages such as

Java and C#, essentially still create applications using

a basic three step process initially developed over 30

years ago. Modified code is first compiled, and then

linked to one or more libraries of functionality after

which the application is re-built into a form that can be

used. This tends to be such a time consuming,

cumbersome process that companies have been

created offering a wide range of products and services

to help manage the process.

The Smallworld MAGIK application’s virtual machine

supports on-the-fly incremental compilation negating

the need for the link step and relegating the build step

to the point at which the application is ready to be rolled

out. This novel approach allows code to be modified

even while the application is still running, yielding faster

development and quicker testing and debugging.

Members of a large development team can work with

less dependency on each other resulting in improved

productivity.

Another advantage specific to the enterprise

environment is that the Smallworld MAGIK application

also allows emergency patches to be applied often

without the need to shutdown mission critical

applications–particularly comforting in a 24x7

environment.

A brief comparison of peers

The Smallworld MAGIK language obviously is now not

the only object oriented language available today (other

vendors have finally realized what a good idea it was)

and, as this paper has alluded to, other object

orientated languages have similar features to

Smallworld MAGIK. It is still worth identifying what the

major differences are from a technical point of view.

■ Smallworld MAGIK, Java and C# all compile

code to intermediate byte codes that are

executed by a virtual machine. Magik and

Java are the only ones that are truly cross

platform.

■ Smallworld MAGIK, Java and C# have virtual

machines that implement a background

garbage collector that efficiently cleans up

unwanted object instances automatically.

■ Only Smallworld MAGIK supports multiple

inheritance. Java and C# support single

inheritance and provide interfaces to allow

code to simulate multiple inheritance (though

this approach often leads to code duplication).

■ Java and C# are typed languages, Smallworld

MAGIK is not (it is what is called polymorphic).

There is much debate on this point: technically

untyped object oriented languages are often

regarded as more pure, whereas the use of

types often yields more formal APIs.

■ Only Smallworld MAGIK supports on-the-fly

incremental compilation. Both Java and C#

require some sort of compile-link-build.

■ Only Smallworld MAGIK was designed from

the beginning to support large, powerful and

complex enterprise GIS applications.

A very brief tour of Smallworld MAGIK

The following sections give a very brief taste of the

Smallworld MAGIK programming language.

Defining classes

Classes in Smallworld MAGIK parlance are called

exemplar and are defined using the statement

def_slotted_exemplar(). In this Smallworld MAGIK code

fragment an exemplar called person has two slots (or

fields) called name and age (these are initialized to “ ”

and 0.0 respectfully). A second exemplar called

employee is defined that inherits from person. employee

has one additional slot called salary that is initially set to

0.0.

def_slotted_exemplar(:person,

{

{:name,""},

{:age,0.0}

})

def_slotted_exemplar(:employee,

{

{:salary,0.0},

},{:person})

Creating instances

Instances of Smallworld MAGIK exemplar are created

by using the _clone statement and then correctly

initializing the slots as appropriate by defining both a

new () and an init () methods:

_method person.new(name,age)

_return _clone.init(name,age)

_endmethod

_method person.init(name,age)

.name<<name

.age<<age

_return _self

_endmethod

_method employee.new(name,age,salary)

_return _clone.init(name,age,salary)

_endmethod

_method employee.init(name,age,salary)

_super.init(name,age)

.salary<<salary

_return _self

_endmethod

A few hints: << means assignment (equivalent to using

= in Java); the dot in front of each slot name allows

access to the data in the slot; _self is a special

statement that returns a reference to the instance of

the object itself and _super is another special

statement referring to the parent class (or super class).

This allows instances to be created from the

Smallworld MAGIK command line:

e<<employee.new(“David Brent”,30,45000)

Implementing methods

Additional methods are implemented in a similar way

as in this example which builds up the calculation of an

employee’s bonus based purely on age:

_private _method employee.age_as_percentage

_return .age/100

_endmethod

_method employee.bonus

_return .salary*_self.age_as_percentage

_endmethod

In this example the _private statement declares the

method age_as_percentage to not be part of the public

API of the employee exemplar thereby allowing its

implementation to change if required whilst at the same

time preserving the public API of the employee exemplar.

Conclusion

The early adoption of object oriented technology has

endowed the Smallworld platform with an unmatched

depth of experience and understanding of its benefits

in the enterprise GIS environment. The Smallworld

MAGIK programming language from GE Energy

remains today the only true pure object oriented

language designed from the outset to support the

powerful, complex and mission critical GIS

4

Smallworld MAGIK: The object oriented language for an object oriented world

GE Energy | GER-4235 (09/04)

applications demanded by today’s enterprises. Key

advantages such as rapid application deployment,

cross platform support, code reuse and accelerated

application development are all characteristics of a

mature object oriented programming language called

Smallworld MAGIK that was pioneered in the late

1980s.

Java is a trademark of Sun Microsystems, Inc.

5

Smallworld MAGIK: The object oriented language for an object oriented world

GE Energy | GER-4235 (09/04)

