750/760 FEEDER PROTECTION SYSTEM
Comprehensive, draw out distribution feeder protection and management

KEY BENEFITS
• Easy to use Feeder Protection System supported by industry leading suite of software tools
• Accurate built-in metering functions - Eliminates auxiliary metering devices and reduces cost
• Improve uptime of auxiliary equipment - I/O monitoring
• Reduce troubleshooting time and maintenance costs - IRIG-B time synchronization, event reports, waveform capture, data logger
• Minimize replacement time - Draw-out construction
• Simplify testing - Built in simulation features

APPLICATIONS
• Primary protection and control for distribution feeders on solidly grounded, high impedance grounded or resonant (Peterson Coil) grounded systems
• Bus blocking/Interlocking schemes
• High-speed fault detection for arc flash mitigation
• Throw over schemes (bus transfer scheme applications)

FEATURES
Protection and Control
• Directional time, instantaneous phase overcurrent protection
• Directional time, instantaneous ground overcurrent protection
• Directional sensitive ground and Restricted Earth Fault protection
• Negative sequence overcurrent protection
• Bus and line undervoltage
• Overvoltage
• Neutral overvoltage
• Underfrequency/Frequency decay
• Reverse power protection
• Synchro Check
• Automatic bus transfer
• Manual control
• Cold load pickup control
• Power factor control
• 4 shot recloser (760 only)
• Power factor control
• Syncrocheck - V, f, Hz, & dead-source

Communications
• Networking interfaces - 10Mbps Ethernet, RS232, RS485 and RS422 ports
• Ethernet port, 10Mbps
• Multiple protocols - ModBus™ RTU, ModBus™ RTU, TCP/IP, DNP 3.0 Level 2

Monitoring & Metering
• Metering - current, voltage, sequence components, power, energy, voltage
• Breaker operation & trip failure
• Event recording - 128 time tagged events
• Total breaker arcing current
• Ambient temperature /analog transducer input
• Analog transducer input
• Oscillography & Data Logger - 10 records up to 32 power cycles
• Simulation mode and playback capability.

EnerVista™ Software
• State of the art software for configuration and commissioning GE Multilin products
• Document and software archiving toolset to ensure reference material and device utilities are up-to-date
• EnerVista™ Integrator providing easy integration of data in the 750/760 into new or existing monitoring and control systems
Protection and Control

The 750/760 Feeder Protection System is a digital relay intended for the management and primary protection and control of distribution feeders. This easy to use relay provides comprehensive protection functions for feeders and backup protection for bus, transformers and transmission lines at a reduced product life cycle cost.

Time & Instantaneous Overcurrent

The 750/760 has two phase TOC elements with level detectors for each phase. The 750/760 also has two overcurrent elements most commonly used for primary and backup protection. Each TOC element has the following programmable characteristics:

- Pickup current level for trip, alarm, or control
- Choice of 15 curve shapes (including FlexCurves™) and curve multipliers
- Instantaneous or linear reset time characteristic
- Voltage restraint

Ground overcurrent protection

Solidly grounded and low impedance grounded distribution systems requiring fast clearing of ground faults to limit equipment damage. The following functions are incorporated in the 750/760 to provide ground fault protection:

- Neutral IOC and TOC
- Ground IOC and TOC

The 750/760 allows directional elements to be used to supervise the ground overcurrent protection elements. This means the 750/760 can be used to provide sensitive tripping for faults in one direction. Typical

ANSI Device Numbers & Functions

<table>
<thead>
<tr>
<th>Device Number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Power Factor</td>
</tr>
<tr>
<td>56</td>
<td>Synchronism Check</td>
</tr>
<tr>
<td>27</td>
<td>Bus/Line Undervoltage</td>
</tr>
<tr>
<td>25</td>
<td>Reverse Power</td>
</tr>
<tr>
<td>67N</td>
<td>Neutral Inst�taneous Overcurrent</td>
</tr>
<tr>
<td>67P</td>
<td>Phase Inst�taneous Overcurrent</td>
</tr>
<tr>
<td>67G</td>
<td>Ground Inst�taneous Overcurrent</td>
</tr>
<tr>
<td>67F</td>
<td>Directional Overcurrent</td>
</tr>
<tr>
<td>67G</td>
<td>Directional Overcurrent</td>
</tr>
<tr>
<td>67N</td>
<td>Neutral Directional Overcurrent</td>
</tr>
<tr>
<td>67P</td>
<td>Phase Directional Overcurrent</td>
</tr>
<tr>
<td>670</td>
<td>Sensitive Ground Instantaneous Overcurrent</td>
</tr>
<tr>
<td>6750</td>
<td>Sensitive Ground Directional Overcurrent</td>
</tr>
<tr>
<td>675</td>
<td>Ground Underover Frequency</td>
</tr>
<tr>
<td>81</td>
<td>Frequency Decay</td>
</tr>
<tr>
<td>50N</td>
<td>Neutral Overvoltage</td>
</tr>
<tr>
<td>50P</td>
<td>Phase Overvoltage</td>
</tr>
<tr>
<td>50G</td>
<td>Ground Overvoltage</td>
</tr>
<tr>
<td>50SG</td>
<td>Sensitive Ground Timed Overcurrent</td>
</tr>
<tr>
<td>50P</td>
<td>Phase Timed Overcurrent</td>
</tr>
<tr>
<td>50N</td>
<td>Neutral Timed Overcurrent</td>
</tr>
<tr>
<td>50G</td>
<td>Ground Timed Overcurrent</td>
</tr>
<tr>
<td>50SG</td>
<td>Sensitive Ground Time Overcurrent</td>
</tr>
<tr>
<td>50P</td>
<td>Phase Time Overcurrent</td>
</tr>
<tr>
<td>50N</td>
<td>Neutral Time Overcurrent</td>
</tr>
<tr>
<td>50G</td>
<td>Ground Time Overcurrent</td>
</tr>
<tr>
<td>50SG</td>
<td>Sensitive Ground Instantaneous Overcurrent</td>
</tr>
<tr>
<td>50P</td>
<td>Phase Instantaneous Overcurrent</td>
</tr>
<tr>
<td>50N</td>
<td>Neutral Instantaneous Overcurrent</td>
</tr>
<tr>
<td>50G</td>
<td>Ground Instantaneous Overcurrent</td>
</tr>
</tbody>
</table>

Standard and Flex Curves

The 750/760 has two phase IOC elements with level detectors for each phase. Each IOC element has a programmable pickup current, a time delay during which current must exceed the pickup for operation, and the minimum number of phases required for operation.

Functional Block Diagram

Typical application of FlexCurves™
applications for directional overcurrent include:

- Isolation of the faulted feeder in ring bus or parallel feeder arrangements.
- Prevention of back-feeding utility source fault from industrial plant generators
- Sensitive hi-speed ground protection of transformers

Sensitive ground and Restricted Earth Fault (REF) protection

Sensitive ground and RGF protection features provide sensitive detection of ground faults. Sensitive ground fault protection includes:

- Instantaneous (50N) & Tim [51N] - 2 levels
- Directional supervision allows to discriminate between forward and reverse faults.
- Dual polarization (current & voltage) provides max security and reliability

750/760 employed to provide transformer back up protection (grounded wye windings and autotransformers) using the RGF feature.

Voltage Protection

Overvoltage/Undervoltage protection features can cause a trip or generate an alarm when the voltage exceeds a specified voltage setting for a specified time. Voltage protection includes a negative sequence voltage element to detect abnormal system unbalance conditions, and a neutral displacement voltage element using the calculated zero sequence voltage ($3V_0$) to detect ground faults.

Frequency Protection

750/760 provides functionality to improve network (grid) stability using voltage or frequency based techniques. Also allows to provide back up protection and trip breakers directly when protecting generators and other frequency sensitive power equipment.

- 2 Under-frequency elements (81U)
- 2 Over-frequency elements (81O)
- Frequency decay: 4 df/dt elements (59/81)
 - 2 Undervoltage elements

Reverse power detection

750/760 relay allows to trip or alarm when power flows against the intended direction. In systems having in-plant generation parallel to the utility supply, detection of power flow toward the utility is necessary. For such applications, 750/760 eliminates requirement for separate device to detect power flow direction and reduces overall cost. This feature can also be used to detect motoring power into the generator.

Synchronism Check

Breaker closing can be supervised by ΔV, Δf and ΔHz setpoints. Dead-source alternatives are provided.
Cold Load Pickup Control
This function allows automatic or manual blocking or raising of trip settings for a period after the breaker is closed. Built-in scheme available to perform main-tie-main transfer using a set of three relays, two on incoming and one on a normally open bus tie breaker. This scheme uses "open before close" sequence for safe operation.

Manual Close Control
After the breaker is closed manually, the relay can block any IOC element or raise the pickup value of any TOC element, each for a programmable time delay, after which normal operation is restored.

Bus Transfer Scheme
A set of three relays, two on incoming and one on a normally open bus tie breaker can perform transfer on loss-of-source.

Recloser (760 Only)
Autoreclosing can be initiated externally or from an overcurrent protection. Up to four reclose operations are possible, each with a programmable dead time. For each reclose shot, the relay can be programmed to block any IOC element, and to adjust the curve characteristics of any TOC element. The number of shots can be reduced by high currents.

Equipment Management
The following comprehensive features in the relay allows to manage the primary breaker:
- Trip counter to keep track of number of operations
- Per-phase breaker contact wear calculations for maintenance
- Breaker failure detection
- Trip coil monitoring

Monitoring and Metering
The 750/760 features advanced monitoring and metering functions which include:

Fault Locator
The relay uses captured data to calculate the type, distance to and the impedance of the fault. Records of the last 10 faults are stored.

Power Factor
By monitoring the power factor the 750/760 can help minimize both costs and voltage excursions.

Two independent elements monitor power factor, each with programmable pickup, dropout and time delay.

Analog Input
Any external quantity may be monitored via an auxiliary current input. Two analog input level monitoring elements and two rate-of-change elements are available. When the measured quantity exceeds the pickup level, the relay can trigger an alarm or signal an output.

Event Recording
The relay captures and stores the last 256 events, recording the time, date, cause, and system parameters. Events may be recorded selectively by category, so that only events of interest are recorded.

Oscillography
A block of configurable volatile memory can be used for recording samples of the AC input voltages and current, and the status of logic inputs and output relays. This memory can be configured between the ranges of two to 16 blocks with 16 to 256 power frequency cycles of data respectively. The amount of pre-event data recorded is set by the user. Trace memory recording can be triggered by operation of selected features or logic inputs.

Trip Counter
The number of breaker trip operations is recorded, and can be displayed for statistical purposes (useful for units without operation counters).

Metering
The 750/760 performs accurate measurement of the following:
- Actual V, A, Hz, W, Wh, var, varh, VA-PF
- Watthour cost
- Phasor presentation of V and I
- Symmetrical components of V and I

The 750/760 saves up to 256 power frequency cycles of waveform data
Setpoints block diagram.

- Line (synchronous) voltage: RMS voltage, frequency, and differentials
- Percent of load-to-trip
- Analog input
- Running and maximum demand: A, MW, MVAR, MVA

Setpoints allow the user to simulate three common electrical utility demand measuring techniques.

Data Logging
A configurable memory block can record eight channels of any measured or calculated parameter. In continuous mode, this feature can be programmed to capture from 136 seconds of data per cycle to 48 weeks of data per hour.

Simulation
The relay provides a powerful simulation feature for testing the functionality of the relay in response to programmed conditions. System parameters are entered as setpoints. Pre-fault, fault, and post-fault conditions can be simulated to exercise relay features.

Logic Inputs
The relay has 14 contact and 20 serial inputs which can be programmed to perform any of 60 predefined functions, including remote tripping, resetting, feature blocking, and more.

- Five can be configured to operate as either failsafe or non-failsafe, and either latching, self-resetting, or pulsed; these relays can be programmed to be operated by any feature
- One of the relays is factory programmed as a fail safe internal failure alarm relay

The 750/760 has one high-speed SCR solid state output. The 750/760 has eight analog output channels. Any of 31 measured parameters can be selected to drive these outputs.

IRIG-B Input
An IRIG-B input allows time synchronization using a satellite signal.

Communications
The 750/760 is equipped with three standard serial communications ports, one RS232 located in the front panel, and two RS485/RS422 in the rear of the relay. A rear Ethernet port is also available as an optional feature. The front panel port allows easy local computer access. The rear ports provide remote communications or connection to a DCS, SCADA, or PLC. The baud rate of all the serial ports is variable from 300 to 19,200 bps. The optional Ethernet port can be used to connect the 750/760 to 10 Mbps Ethernet networks. The 750/760 supports ModBus® RTU, DNP3.0 Level 2, and ModBus® RTU TCP/IP protocols.

The three serial ports support ModBus® RTU protocol, while any one of the two rear ports but not both can be configured to support DNP 3.0 Level 2. The optional Ethernet port supports ModBus® RTU via TCP/IP protocol. The communication system of the 750/760 is designed to allow simultaneous communication via all ports.

Using Ethernet as the physical media to integrate the 750/760 to Local or Wide Area Networks, replaces a multidrop-wired network (e.g., serial Modbus®), and eliminates expensive leased or dial-up connections, reducing monthly operating costs.

Access Security
The 750/760 can be protected against unauthorized setpoint changes. A key switch may be installed on the rear terminals to allow setpoint changes from the front panel. An optional passcode restricts setpoint changes from both the front panel and ports.

EnerVista™ Software
The EnerVista™ Suite is an industry-leading set of software programs that simplifies every aspect of using the 750/760 relay. The EnerVista™ suite provides all the tools to monitor the status of your protected asset, maintain the relay, and integrate information measured by the 750 into DCS or SCADA monitoring systems. Convenient COMTRADE and Sequence of Events viewers are an integral part of the 750 Setup software included with every 750 relay, to carry out postmortem event analysis to ensure proper protection system operation.

EnerVista™ Launchpad
EnerVista™ Launchpad is a powerful software package that provides users with all of the setup and support tools needed for configuring and maintaining GE Multilin products. The setup software within Launchpad allows configuring devices in both real-time by using serial, Ethernet, or modem connections, or offline by creating setting files to be sent to devices at a later time.

Included in Launchpad is a document archiving and management system that ensures critical documentation is up-to-date and available when needed. Documents made available include:
- Manuals
- Application Notes
- Guideform Specifications
- Brochures
- Wiring Diagrams
- FAQs
- Service Bulletins

Viewpoint Monitoring
Viewpoint Monitoring is a simple-to-use and full-featured monitoring and data recording software package for small systems. Viewpoint Monitoring provides a complete HMI package with the following functionality:
- Plug- &- Play Device Monitoring
- System Single-Line Monitoring & Control
- Annunciator Alarm Screens
- Trending Reports
- Automatic Event Retrieval
- Automatic Waveform Retrieval

www.GEDigitalEnergy.com
Typical Wiring

Technical Specifications

PROTECTION

PHASE/NEUTRAL/GROUND/NEGATIVE SEQUENCE

- **TIME OVERCURRENT PROTECTION**
 - **Pickup level:** 0.05 to 20.00 in steps of 0.01 x CT
 - **Dropout level:** 97 to 98% of pickup
 - **Curve shape:** ANSI extremely/very/moderately/normally inverse
 - **Curve multiplier:** 0.00 to 100.00 in steps of 0.01
 - **Reset type:** Single
 - **Level accuracy:** Per current input (Ig) x 3 input error
 - **Timing accuracy:** ±100 ms (whichever is greater)

- **SENSITIVE GROUND TIME OVERCURRENT PROTECTION**
 - **Pickup level:** 0.00 to 1.000 in steps of 0.001 x CT
 - **Curve shape:** ANSI extremely/very/moderately/normally inverse
 - **Curve multiplier:** 0.00 to 100.00 in steps of 0.01
 - **Reset type:** Single
 - **Level accuracy:** Per current input (Ig) x 3 input error
 - **Timing accuracy:** ±100 ms (whichever is greater)

PHASE/NEUTRAL/GROUND/NEGATIVE SEQUENCE INSTANTANEOUS OVERCURRENT PROTECTION

- **Pickup level:** 0.05 to 20.00 in steps of 0.01 x CT
- **Dropout level:** 97 to 98% of pickup
- **Time delay:** 0.00 to 600.00 in steps of 0.01 x CT
- **Level accuracy:** Per phase/neutral/gound current
- **Timing accuracy:** ±100 ms (whichever is greater)

PHASE DIRECTIONAL

- **Relay Connection:** 90° (quadrature)
- **Polarizing Voltage:** Vo (phase A), Vbc (phase B), Vab (phase C)
- **MTh:** 0 to 359° in steps of 1
- **Angle Accuracy:** ±6°
- **Operation Delay:** 25 to 40 ms

NEUTRAL DIRECTIONAL

- **NOTE:** Polared by voltage, current, or both voltage and current. For voltage element polarizing, the source VTs must be connected in Wye.
- **Polarized voltage:** Vo
- **Polarizing current:** Ig
- **MTH:** 0 to 359° in steps of 1
- **Angle accuracy:** ±6°
- **Operation delay:** 25 to 40 ms

GROUND / SENSITIVE GROUND DIRECTIONAL

- **NOTE:** Polared by voltage, current, or both voltage and current. For voltage element polarizing, the source VTs must be connected in Wye.
- **Polarizing voltage:** Vo
- **Polarizing current:** Ig
- **MTh:** 0 to 359° in steps of 1
- **Angle accuracy:** ±6°
- **Operation delay:** 25 to 40 ms
- **BUS UNDERVOLTAGE 1/2 AND LINE UNDERVOLTAGE 3/4**
 - **Minimum voltage:** Programmable threshold from 0.00 to 1.25 x VT in steps of 0.01
 - **Dropout level:** 0.00 to 1.25 in steps of 0.01 x VT
 - **Curve:** Definite time or inverse time
 - **Time delay:** 0.00 to 600.00 in steps of 0.1 s
 - **Phases:** Any one/any two/all three
 - **Level accuracy:** Per voltage input
 - **Timing accuracy:** ±100 ms

OVERVOLTAGE 1/2

- **Pickup level:** 0.00 to 1.25 in steps of 0.01 x VT
- **Dropout level:** 97 to 98% of pickup
- **Time delay:** 0.00 to 600.00 in steps of 0.1 s
- **Phases:** Any one/any two/all three
- **Level accuracy:** Per voltage input
- **Timing accuracy:** ±100 ms
PROTECTION

NEGATIVE SEQUENCE VOLTAGE
Pickup level: 0.0 to 1.25 in steps of 0.01 x VT
Dropout level: 0.0 to 6000.0 in steps of 0.1 x VT
Time delay: 0.0 to 600.0 in steps of 0.1 s (definite time)
Level accuracy: ±3% of rated
Timing accuracy: ±100 ms

UNDERFREQUENCY (U): Minimum voltage, 90% of 1.25 in steps of 0.01 x VT in phase A
Pickup level: 20.00 to 65.00 in steps of 0.01 Hz
Dropout level: 0.0 to 600.0 in steps of 0.01 s (definite time)
Level accuracy: ±0.02 Hz
Timing accuracy: ±100 ms

NEUTRAL DISPLACEMENT
Pickup level: 0.0 to 1.25 x VT in steps of 0.01
Dropout level: 97.9 to 98% of pickup
Curves: ANSI Extremely/Very/Moderately Normally Inverse, Definite Time (4.5 s base curve), IEC Curve A/B/C and Short, FlexCurve A/B (programmable curves), IEC Extreme/Very/Inverse/Short
Curves multiplier: 0 to 1000.0 in steps of 0.1
Reset type: Instantaneous/Linear
Level accuracy: ±3% voltage input error
Timing accuracy: ±50 ms

REVERSE POWER IF ENABLED
Pickup level: 0.015 to 0.600 x rated power
Dropout level: 97.9 to 98% of pickup
Reset time: less than 100 ms
Level accuracy: ±3% of rated
Time delay: 0.0 to 600.0 in steps of 0.1
Timing accuracy: ±200 ms (includes Reverse Power pickup time)

BREAKER FAILURE
Pickup level: 0.05 to 20.0 x CT in steps of 0.01
Dropout level: 97.9 to 98% of pickup
Time delay: 0.03 to 1.00 s in steps of 10
Timing accuracy: ±50 ms error
Level accuracy: ±4 ms per CT input.

METERING CURRENT

Phasors:
Phase A RMS current
Phase B RMS current
Phase C RMS current
% of load-to-trip accuracy: ±0.5% of fullscale

VOLTAGE
Phasors:
Phase A-N (A-B) voltage
Phase B-N (B-C) voltage
Phase C-N (C-A) voltage
±0.25% of fullscale

 FREQUENCY
Measured:
A-N (A-B) bus and line voltage
Range: 16 to 65 Hz
Accuracy: ±0.02 Hz

SYMMETRICAL COMPONENTS
Current level accuracy: ±1.5% of full scale
Voltage level accuracy: ±0.75% of full scale
Current and voltage angle accuracy: ±2°

3 Ph POWER FACTOR
Range: 0.00 Log to 1.00 to 0.00 Lead
Accuracy: ±0.02

3 Ph REAL POWER
Range: -3000.0 to 3000.0 MW
Accuracy: ±1% of fullscale

3 Ph REACTIVE POWER
Range: -3000.0 to 3000.0 Mvar
Accuracy: ±1% of fullscale

3 Ph APPARENT POWER
Range: -3000.0 to 3000.0 MVA
Accuracy: ±1% of fullscale

WATT-HOURS
Range: -2.1 to 108.2 to 2.1 to 108 MW-hr
Accuracy: ±2% of fullscale per hour

VAR-HOURS
Range: -2.1 to 108.2 to 2.1 to 108 MVAR
Accuracy: ±2% of fullscale per hour

Dem AND RANGE
Phase A/B/C current: 0 to 66353.5 A
3 Ph real power: -3000.0 to 3000.0 MW
3 Ph reactive power: -3000.0 to 3000.0 Mvar
3 Ph apparent power: -3000.0 to 3000.0 MVA

DEMAND MEASUREMENT
Thermal exponential, 90% response time
 programmed:
Block interval / rolling demand, time interval programmed:
±2% of fullscale

MONITORING

PHASE/NEUTRAL CURRENT
Pickup level: 0.05 to 20.0 x CT in steps of 0.01
Dropout level: 97 to 98% of pickup
Time delay: 0 to 600.0 in steps of 1
Level accuracy: ±0.02% of rated
Timing Accuracy: ±100 ms

POWER FACTOR
Required voltage: >30% of nominal in all phases
Pickup level: 0.50 log to 0.50 lead in steps of 0.01
Dropout level: 0.50 log to 0.50 lead in steps of 0.01
Time delay: 0 to 600.0 in steps of 1
Level accuracy: ±0.02
Timing Accuracy: ±100 ms

ANALOG IN THRESHOLD
Pickup level: 0 to 66353 units in steps of 1
Dropout level: 97 to 98% of Pickup
Level accuracy: ±1%
Timing Accuracy: ±100 ms

ANALOG IN ALARM
Range: ±0.02% of full scale

METERED
Current accuracies are based on less than 2 × CT
and 50 to 130 V inputs
Measured values:
Phase A/B/C current (A), 3 Ph real power (MW), 3 Ph reactive power (MVAr), 3 Ph apparent power (MVA)
Measurement type:
Thermal Exponential, 90% response time
Block Interval / Rolling Demand, time interval (programmed):
5, 10, 15, 20, 30, or 60 min.
Block Interval with Start Demand Interval
5, 10, 15, 20, 30, or 60 min.
Measurement type:
Thermal Exponential, 90% response time

INPUTS

PHASE CURRENT INPUT
Source CT: 1 to 5000 A primary / 1 or 5 A secondary
Relay input: 1 A or 5 A [specified when ordering]
Burden: Less than 0.2 VA at 1 or 5 A
Conversion range: 0.01 to 20 CT Fundamental frequency only
Accuracy: ±0.02 % of full scale at ±2% of 2 x CT ±1% of 20 x CT
Overload withstand: 1 second @ 80 times rated current continuous 3 times rated current
Calculated neutral current errors: ±3 phase inputs

GROUND CURRENT INPUT
Source CT: 1 to 5000 A primary / 1 or 5 A secondary
Relay input: 1 A or 5 A [specified when ordering]
Burden: Less than 0.2 VA at 1 or 5 A
Conversion range: 0.01 to 20 CT Fundamental frequency only
Accuracy: ±0.02 % of full scale at ±2% of 2 x CT ±1% of 20 x CT
Overload withstand: 1 second @ 80 times rated current continuous 3 times rated current

SENSITIVE GROUND CURRENT INPUT
Source CT: 1 to 5000 A primary / 1 or 5 A secondary
Relay input: 1 A or 5 A [specified when ordering]
Burden: Less than 0.2 VA at 1 or 5 A
Conversion range: 0.005 to 1000 x CT (fundamental frequency only)
Accuracy: ±0.02 % of full scale ±1% of 1 x CT
Overload withstand: 1 second @ 80 times rated current continuous 3 times rated current

BUS AND LINE VOLTAGE INPUTS
Source VT: 0.12 to 6000 V / 50 to 240 V
Relay input: 50 V to 240 V phase-neutral
Burden: Less than 0.025 VA at 120 V or 567 K
Max continuous: 100 V phase-neutral (full scale) CT withstands inherent frequency only
Accuracy (0° - 40° C):
±0.25% of fullscale (0 to 130 V)
±0.02% of fullscale (130 to 273 V)

LOGIC INPUTS
Inputs:
14 contact and/or virtual, 6 virtual only
Functional inputs assigned to logic inputs
Dry contacts:
1000 maximum on resistance 32 VDC @ 2 mA provided by relay
Wet contacts: 30 to 300 VDC @ 2 mA (external DC voltage only)

ANALOG CURRENT INPUT
Current input:
0 – 1 mA, 0 – 5 mA, 0 – 20 mA, 4 – 20 mA [programmable]
Input impedance:
1 kΩ max
Input range:
0.005 to 1.000 x CT

TRIP AND CLOSE COIL MONITORING INPUTS
Acceptable voltage range of 20 to 250 VDC

IRIG-B INPUT
Amplitude-modulated:
2.5 to 6 Vp-p @ 3.1 signal ratio
DC shift:
±500/760 Distribution Feeder Protection System
Technical Specifications

CONTROL

UNDERVOLTAGE RESTORATION
Initiated by: Trip from undervoltage 1, 2, 3 or 4
Minimum voltage level: 0.00 to 1.25 x VT in steps of 0.01
Time delay: 0.1 to 100.0 in steps of 0.1 s
Incomplete sequence time: 1 to 10000 in steps of 1 min.
Phases: Any one/two/all three programmable
Level accuracy: ±100 ms
Timing accuracy: ±100 ms

UNDERFREQUENCY RESTORATION
Initiated by: Trip from underfrequency 1, 2
Minimum voltage level: 0.00 to 1.25 x VT in steps of 0.01
Minimum frequency level: 0.01 Hz
Time delay: 0.1 to 100.0 in steps of 0.1 s
Incomplete sequence time: 1 to 10000 in steps of 1 min.
Level accuracy: ±100 ms
Timing accuracy: ±100 ms

COMUNICATIONS

Serial Ports: 300 – 19,200 baud, programmable parity, ModBus® RTU or DNP 3.0 protocol
Ethernet Port: RJ45 Connector, ModBus® RTU over TCP/IP

POWER SUPPLY

CONTROL POWER Options: LO/Hi (specified when ordering)
HI range: AC = 20 to 60 V
LO range: AC = 20 to 48 V @ 48 – 62 Hz
AC = 70 to 265 V @ 48 – 62 Hz
Power: 1 in 10 p.u.
Voltage loss hold-up time: ±100 ms

ENVIROMENTAL

Operating temperature range: -40° C to +60° C
Ambient storage temperature: -40° C to +85° C
Humidity: Operating up to 95% from condensing @ 55°C
Pollution degree: IP40 (front), IP20 (back)

APPROVALS TESTS

UL508 / UL C22.2-14 / UL1053

PRODUCTION TESTS

Thermal cycling: Operational test at ambient, reducing to -40°C and then increasing to 60°C
Dielectric strength: On CT inputs, VT inputs, control power inputs, switch inputs, coil supervision outputs, and relay outputs (2 kVac for 1 minute) to safety ground.

ACCESSORIES FOR THE 750/760

Feeder Protection with the SR750/760
Multilink Ethernet Switch
Viewpoint Maintenance
Viewpoint Monitoring

Visit www.GEMultilin.com/750 to:

View Guideline specifications
Download the instruction manual
Review applications notes and support documents
Buy a 750/760 online
View the SR Family brochure

Ordering Note: This order code is valid for the latest version of SR hardware and firmware version. The older hardware and previous firmware versions are still available and may be ordered through the usual channels.

Ordering:

750/760

Phase Current Inputs
Ground Current Inputs
Sensitive Ground Current Inputs
Power Supply Options
Analog Outputs
Breaker Status LED
Enhancements
Environmental Protection

Visit www.GEDigitalEnergy.com

www.GEDigitalEnergy.com

324

091002-v10